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Abstract

Natural intelligence processes experience as a continuous stream, sensing, acting, and learn-
ing moment-by-moment in real time. Streaming learning, the modus operandi of classic
reinforcement learning (RL) algorithms like Q-learning and TD, mimics natural learning
by using the most recent sample without storing it. This approach is also ideal for resource-
constrained, communication-limited, and privacy-sensitive applications. However, in deep
RL, learners almost always use batch updates and replay buffers, making them computa-
tionally expensive and incompatible with streaming learning. Although the prevalence of
batch deep RL is often attributed to its sample efficiency, a more critical reason for the ab-
sence of streaming deep RL is its frequent instability and failure to learn, which we refer to
as stream barrier. This paper introduces the stream-x algorithms, the first class of deep RL
algorithms to overcome stream barrier for both prediction and control and match sample
efficiency of batch RL. Through experiments in Mujoco Gym, DM Control Suite, and Atari
Games, we demonstrate stream barrier in existing algorithms and successful stable learning
with our stream-x algorithms: stream Q, stream AC, and stream TD, achieving the best
model-free performance in DM Control Dog environments. A set of common techniques un-
derlies the stream-x algorithms, enabling their success with a single set of hyperparameters
and allowing for easy extension to other algorithms, thereby reviving streaming RL.

1 Introduction

Learning from a continuous stream of experience as it arrives is a paramount challenge,
mirroring natural learning (Hayes et al. 2021), and is relevant to many applications involv-
ing on-device learning (Hayes & Kanan 2022, Neuman et al. 2022, Verma et al. 2023).
For instance, learning from recent experience can help systems adapt quickly to changes
(e.g., wear and tear) compared to learning from potentially obsolete data. In streaming
reinforcement learning, such as Q-learning or temporal difference (TD) learning, the agent
receives an observation and reward at each step, taking action and making a learning up-
date immediately without storing the sample. This scenario is practical since retaining raw
samples is often infeasible due to limited computational resources (Hayes & Kanan 2022),
lack of communication access, or concerns about data privacy (Van de Ven et al. 2020).

While classic RL algorithms like Q-learning, SARSA, Actor-Critic, and TD were orig-
inally developed for streaming learning (see Sutton & Barto 2018), recent advancements
have shifted focus primarily toward batch learning. Indeed, advancements in recent deep
RL rely heavily on computationally extensive batch learning as demonstrated in many do-
mains, such as games (e.g., Mnih et al. 2015, Silver et al. 2017), simulated environments
(e.g., Haarnoja et al. 2018) and various robotics tasks (e.g., Smith et al. 2023, Haarnoja

©2024 Mohamed Elsayed, Gautham Vasan and A. Rupam Mahmood.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/


Elsayed, Vasan, and Mahmood

Agent
reward

state action
Replay
Buffer

sample batch
Learning
Algorithm

update

(a) Batch RL

Agentreward

state

action
update

Learning
Algorithm

(b) Streaming RL

Figure 1: Agents in streaming RL and batch RL problem settings. Streaming RL requires
updates from immediate individual samples without storing past samples, whereas batch
RL relies on batch updates from past samples stored in a replay buffer.

et al. 2024). Batch RL algorithms store past samples in a storage called replay buffer and
draw samples from it in a batch to make updates. Figure 1 highlights the difference between
agents in the problem settings of streaming RL and batch RL1. Unlike batch RL, streaming
RL does not permit the use of a replay buffer or batch updates.

The success of batch RL is often attributed to its efficiency with data and modern
hardware, as argued by Riedmiller (2005), Mnih et al. (2015, 2016), and Lillicrap et al.
(2016), among many others. Averaging samples in a batch may enable more reliable up-
dates, and reusing samples multiple times may potentially extract more information from
the same sample. Moreover, batch updates allow efficient use of parallel environments
and modern hardware accelerators like GPUs. However, the prohibitive computational
requirements of batch learning methods render them unsuitable for on-board learning in
resource-constrained systems, such as edge devices or Mars rovers (Wang et al. 2023), or
when rapid decision-making is necessary (e.g., latency arbitrage). For example, storing
high-dimensional images for replay demands substantial memory, and batch updates slow
down real-time prediction and decision-making (see Yuan & Mahmood 2022). When com-
putation is constrained or samples cannot be stored, streaming learning becomes essential.
And yet, streaming learning remains largely unadopted in deep RL, and currently, there
is a noticeable absence of streaming RL applications in practice, making deep RL under
resource constraints unachieved.

Deep streaming RL is understood to be inherently sample inefficient since samples can-
not be reused (ct. D’Oro et al. 2023, Schwarzer et al. 2023). Another reason for sample
inefficiency is that credit assignment is typically propagated slowly by one-step methods,
which bootstrap fully, compared to their multi-step counterparts, which use rewards from
multiple steps (Sutton & Barto 2018). Although methods using multi-step returns have
better credit assignment, they cannot make updates at immediate time step or without
storing (Mahmood 2017). Eligibility traces (Sutton 1988, van Hasselt et al. 2014, Mah-
mood & Sutton 2015, van Seijen et al. 2016, White & White 2016, Thodoroff et al. 2019,
van Hasselt et al. 2021) attempt to balance the benefits of using multi-step returns with
updating at every time step. However, they are rarely used in deep RL.

Although the absence of streaming deep RL is attributed to its sample inefficiency, a
more critical reason is that existing deep learning methods experience learning instabilities
and even failures in the streaming learning setting (see Elfwing et al. 2018), which we
refer to as stream barrier (see Figure 2). Deep RL methods already struggle with online

1. We use the word batch to refer to methods that use batch updates, not to be confused with offline RL.
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(a) MuJoCo
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(b) DM Control
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(c) Atari

Figure 2: Stream barrier. Both classic streaming methods (e.g., Classic Q) and streaming
versions of batch RL methods (e.g., PPO1) perform poorly due to stream barrier. In
contrast, our stream-x algorithms (e.g., stream Q) overcome stream barrier and perform
competitively with their batch RL counterparts, demonstrating its stability and robustness.
The performance is shown as zero if some of the runs for an algorithm diverged.

updates, facing issues such as loss of plasticity (Lyle et al. 2023, Dohare et al. 2024), poor
learning dynamics (Lyle et al. 2024), failure to achieve further improvement (e.g., Lyle et
al. 2023, 2022), and gradual performance degradation (e.g., Dohare et al. 2023, Abbas
et al. 2023, Elsayed & Mahmood 2024). In addition, streaming deep RL presents unique
challenges since the observation and reward distributions used for updating change rapidly
over time, exacerbating the issues. The lack of application of eligibility traces with neural
networks can also be attributed to the issues of instability (see Anand & Precup 2021, Harb
& Precup 2017), which can even lead to divergence (Veeriah et al. 2017). As a result, deep
RL methods face stream barrier and have largely been overlooked. However, a few studies
(Elfwing et al. 2018, Young & Tian 2019) have shown nascent performance with streaming
learning, suggesting that this area holds potential for further exploration and development.

In this paper, we address stream barrier by introducing streaming deep RL methods—
stream TD(λ), stream Q(λ), and stream AC(λ)—that are collectively called the stream-x
algorithms and utilize eligibility traces. Our approach enables learning from the most recent
experiences without using replay buffers, batch updates, or target networks. Contrary to the
common belief, we demonstrate that streaming deep RL can be stable and as sample efficient
as batch RL. The effectiveness of our approach hinges on a set of key techniques that are
common to all stream-x algorithms. They include a novel optimizer to adjust step size for
stability, appropriate data scaling, a new initialization scheme, and maintaining a standard
normal distribution of pre-activations. Our approach requires no hyperparameter tuning,
and the results with different algorithms on the electricity consumption prediction task
(Zhou et al. 2021), MuJoCo (Todorov et al. 2012), DM Control Suite (Tunyasuvunakool
et al. 2020), MinAtar (Young & Tian 2019), and Atari 2600 (Bellemare et al. 2013)
environments are achieved using the same set of hyperparameters. The results demonstrate
our approach’s ability to work as an off-the-shelf solution, overcome stream barrier, provide
results previously unattainable with streaming methods, and even surpass the performance
of batch RL, achieving the best model-free performance on some complex environments.
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2 Background

The interaction between the agent and the environment is modeled as a Markov decision
process (MDP). We consider in this paper episodic interactions, the episodic MDP of which
is given by the tuple (S,A,P,R, γ, d0,H), where S is the set of states, A is the set of actions,
P : S × A → ∆(S × R) is the transition dynamics model in which ∆(X ) is a distribution
over the set X , R denotes the set of reward signals, d0 is the distribution of starting states,
γ ∈ [0, 1] is the discount factor, and H is the set of terminal states. The agent interacts with
the environment according to a policy π : S → ∆(A) that gives a distribution over actions
conditioned on the state. The interaction in each episode starts when the environment
samples a state from the starting state distribution: S0 ∼ d0. At each time step t, the
agent receives a state St from the environment, takes an action At ∼ π(·|St), and the
environment samples the next state and reward using the transition model: St+1, Rt+1 ∼
P(·, ·|St, At). The agent keeps interacting with the environment until it reaches one of the
terminal states ST ∼ H, where T is the termination time step. The episodic return is defined
as the sum of discounted rewards starting from time step t: Gt

.
=

∑T
k=t+1 γ

k−t−1Rk. The
goal of the agent in the prediction problem is to estimate, for a given policy π, the value
function vπ

.
= Eπ [Gt|St = s] ,∀s ∈ S with an estimator v̂(s,w) or the action-value function

qπ(s, a)
.
= Eπ [Gt|St = s,At = a] , ∀s ∈ S, a ∈ A with an estimator q̂(s, a,w), where w is

a parameter vector. The goal of the agent in the control problem is to find the optimal
policy π∗ using action-value estimates such that qπ∗(s, a) = maxπ qπ(s, a), ∀s ∈ S, a ∈ A or
to optimize the objective J(θ)

.
= ES0∼d0 [vπθ

(S0)] wrt θ that parameterizes the policy πθ.

Temporal Difference Learning. To estimate the value function for prediction or learn
the optimal policy for control, we can use a Monte Carlo estimate based on the return
Gt, which requires waiting until the episode is terminated, resulting in the update rule
wt+1

.
= wt + α(Gt − v̂(St,wt))∇wv̂(St,wt). Temporal difference (TD) learning (Sutton

1988) alleviates this issue by relying on the idea of bootstrapping. In TD learning, the
return Gt is replaced by the bootstrapped target Rt+1 +γv̂(St+1,w) called one-step return,
resulting in the TD error: δt

.
= Rt+1 + γv̂(St+1,w) − v̂(St,w). The TD error can be used

to update a value estimate as soon as the next state and reward are observed.

Policy Gradient Theorem. When the agent is learning a parameterized policy to maxi-
mize the objective J(θ), model-free gradient updates can be used according to the policy gra-
dient theorem (Sutton et al. 1999): ∇J(θ) ∝ ES∼dγπ ,A∼π [qπ(S,A)∇θ log π(A|S,θ)], where
dγπ is the discounted stationary-state distribution. In practice, the action-value function qπ
is replaced by an, often biased, estimate, and states are sampled on-policy or from a replay
buffer without considering discounting and including further bias (Thomas 2014, Nota &
Thomas 2019, Zhang et al. 2022, Che et al. 2023). The estimator δt∇θ log π(At|St,θ) ≈
∇J(θ) is used in one-step actor-critic (AC), which learns both a policy or an actor and a
value function or a critic (see Barto et al. 1983).

Eligibility Traces. Eligibility traces are short-term memory vectors that can be used to
form multi-step methods in a streaming form, achieving better credit assignment than their
one-step counterparts. The idea of eligibility traces (Sutton & Barto 1981) is influenced by
the biological neuroscience model by Klopf (1972). The eligibility trace vector is initialized
to zero at the start of the episode; then, it accumulates the value gradient faded by γλ,
where λ ∈ [0, 1] is the eligibility trace parameter. Specifically, given the eligibility trace
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vector zt, its update rule is given by zt
.
= γλzt−1 +∇wv̂(St,w), where z−1

.
= 0. The idea

of eligibility traces is powerful and can be combined with almost all temporal difference
methods (Sutton & Barto 2018) by replacing the value or policy gradients with their trace
counterparts. For example, the TD(0) algorithm estimates a value function by using the
update rule: wt+1

.
= wt +αδt∇wv̂(St,wt), which can be replaced by wt+1

.
= wt +αδtzt for

the TD(λ) algorithm that uses eligibility traces.

Although the eligibility trace looks like a momentum term at a first glance, they have
distinct functionality. In SGD with momentum (Polyak 1964), a trace of gradients is main-
tained: zt+1

.
= βzt +∇wL and wt+1

.
= wt−αzt, where L is the loss, α is the step size, and

β is some decay factor. Thus, the momentum term is a trace of the past gradients of the
loss. There are two mechanistic differences between the eligibility trace and the momentum
term: 1) in eligibility traces, we maintain a trace of past gradients of the function output
itself, whereas we maintain a trace of the past gradients of the loss in the momentum term,
and 2) the momentum term is never reset to zero, whereas eligibility traces are reset af-
ter the end of each episode since there is no meaningful credit assignment across different
episodes. And unlike the momentum term, updates with eligibility traces are equivalent
to those of multi-step returns (e.g., λ-return), achieving fixed points superior to one-step
updates (Mahmood 2017, Sutton & Barto 2018). Lastly, eligibility traces have been found
to be effective primarily in tabular settings or with linear function approximation, while
none of their deep-learning counterparts are known to perform well (Veeriah et al. 2017).

Neural Networks. Learning representations from data is one of the crucial tasks that
allow agents to work on arbitrary problems without relying on domain knowledge (e.g.,
via hand-crafted representations). Neural networks are a natural choice for learning those
representations since we can use them in a data-driven approach. Typically, neural networks
are structured as a composition of non-linear functions where the output of each function
is the input of the next, and so on, to learn a hierarchical structure of features. When
the number of functions composing a neural network becomes large, the neural network is
often referred to as a deep neural network. For simplicity, we focus here on fully connected
neural networks. Consider a neural network f parametrized by the set of weights W =
{W1,W2, ...,WL}, where Wl,i,j is the entry in the i-th row and the j-th column of the matrix
weight matrix at the l-th layer. In the forward pass, we get the post-activation vector hl

by applying the activation function σ to the pre-activation vector al−1: hl
.
= σ(al−1). We

simplify the notation by starting post-activation vector h1 with the neural network input x:
h1

.
= x. We obtain the pre-activation vector al by applying a matrix-vector multiplication

between the weight matrix Wl and the post-activation vector hl: al
.
= Wlhl. The bias

terms can be included if we appended the matrix by an additional column and appended 1
to each post-activation vector.

3 Method

In this section, we introduce our method and describe the necessary components for success-
ful streaming reinforcement learning agents. The agents, under the streaming reinforcement
learning problem, are required to process one sample at a time without storing any sam-
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ples for future reuse.2 Such requirements create additional hurdles compared to batch deep
reinforcement learning, even though both learn from a non-stationary stream of data. We
list the issues that hinder learning as 1) learning instability due to occasional large updates,
2) learning instability due to activation nonstationarity, and 3) improper scaling of data.
These issues are already present in batch methods causing several detrimental effects such
as drop in performance (Dohare et al. 2023, Abbas et al. 2023), high variance (Bjorck et
al. 2021), or inability to improve performance (Lyle et al. 2023). However, they are ex-
acerbated with streaming learning as updates can fluctuate more from one step to another
due to non-i.i.d. sampling for updates. For example, streaming learning is more prone to
instability as successive per-sample gradients can point in different directions, making it
difficult to choose a single working step size. In contrast, batch methods mitigate this issue
by averaging gradients from an i.i.d.-sampled batch drawn from a large pool. Moreover, we
use additional techniques for sample efficiency, which we describe first.

3.1 Sample efficiency with sparse initialization and eligibility traces

Since steaming learning methods must discard the sample once used, they can potentially
be sample inefficient. Here, we present two techniques to improve sample efficiency of
streaming learning methods: 1) sparse initialization and 2) eligibility traces.

Sparse representations induce locality when updating the network, which reduces the
amount of interference between dissimilar inputs. Many works have shown that sparsity
reduces forgetting, which helps improve sample efficiency in reinforcement learning (Liu et
al. 2019, Pan et al. 2021, Sokar et al. 2022, Lan & Mahmood 2023). For example, tile
coding (Albus 1971) has been shown to reduce forgetting in RL (see Ghiassian et al. 2020).

Algorithm 1 SparseInit

Require: network f , sparsity level s
for weight W and bias b do
n← s× fan in

Permutation set P of size fan in

Index set I of size n (subset of P)
Wi,j ∼ U [ − 1/

√
fan in, 1/

√
fan in] ,∀i, j

Wi,j ← 0,∀i ∈ I,∀j
bi ← 0, ∀i

Return: initialized network f

We use a simple technique to introduce
sparsity at initialization by randomly ini-
tializing most weights to zeros. Specifi-
cally, we impose a sparsity level s (e.g.,
0.9) at each layer representing the propor-
tion of zero-initialized weights. The remain-
ing weights are initialized according to the
LeCun initialization scheme (LeCun et al.
2002). Although sparsity-based initializa-
tion has not been investigated for reinforce-
ment learning before, it has been shown to
improve optimization in supervised learn-
ing (Martens 2010). Algorithm 1 shows our
proposed sparse initialization technique—SparseInit. This sparse initialization scheme can
be used for both fully-connected and convolutional layers.

Credit assignment is a fundamental challenge in learning from interaction. Eligibility
traces (Sutton 1988) provide a compact approach for better credit assignment than one-step
methods. In this paper, we use accumulating traces for both value functions and policies.

2. Streaming learning methods mainly require CPUs instead of GPUs since no batch updates are used,
unless a very large neural network is used in which they might benefit from GPUs. In such case,
the overhead of context switching between CPU and GPU might be negligible compared to the GPU
computational cost required for the forward and backward passes in very large networks.
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Given a value function v̂ parameterized by the weight vector wt, its eligibility trace vector
zt is defined as: zt = γλzt−1 + ∇v̂w(St,wt), where γ is the discount factor and λ is the
eligibility trace parameter. Given a policy π parameterized by the weight vector θ, its
eligibility trace is defined as: zt = γλzt−1 + ∇ log πθ(At|St,θt). We refer the reader to
Appendix E to show how we can incorporate entropy regularization with eligibility traces.
Note that since we accumulate values in the trace vector, the traces can be arbitrarily large,
potentially causing divergence (Veeriah et al. 2017). Thus, a careful update rule must be
used to prevent eligibility traces from causing instability.

3.2 Adjusting step sizes for maintaining update stability

Instability in deep reinforcement learning is an issue that persisted for a long time (Bjorck
et al. 2021). Recently, many works (e.g., Asadi et al. 2023, Lyle et al. 2023, Dohare et al.
2023) have identified the Adam optimizer (Kingma & Ba 2015) as one of the main sources
of instability. In this section, we aim to develop a stable optimizer that is more suitable for
streaming reinforcement learning.

In optimization, a well-known strategy for avoiding large updates and choosing an ap-
propriate step size is the backtracking line search method (Armijo 1966), which for each
iteration typically chooses the step size that maximizes the expected or batch-based ob-
jective. Likewise, backtracking line search has been shown to be effective in stabilizing
on-policy batch reinforcement learning (e.g., TRPO, Schulman et al. 2015). In the stream-
ing case, it is not clear if choosing a step size that reduces the error in the current sample
is the best strategy. A more pertinent goal in streaming learning is to de-emphasize an
update if it is too large, for example, if the update overshoots the target on a single sample
(Mahmood 2010, Mahmood et al. 2012). More specifically, given a scalar error δ(S) on a
sample (e.g., say an input-output pair), an update overshoots if the post-update error on
the same sample δ+(S) changes its sign, that is, δ(S)δ+(S) < 0. A change in the error
sign indicates that the error has been over-corrected or the update has overshot the target.
Kearney (2023) defined a related quantity, the effective step size, that measures the amount
of progress the learner achieved based on the update, given as follows:

ξ
.
=

δ(S)− δ+(S)

δ(S)
, (1)

where ξ > 1 indicates overshooting or over-correction, ξ < 1 indicates partial correction,
and ξ = 0 indicates no correction. The effective step size quantity can be used to control
the amount of error correction, for example, well before overshooting occurs. We can
compute the effective step size with a counterfactual update using some starting step size
α = αInit ∈ (0, 1]. If the effective step size is larger than the maximum effective step size,
ξ > ξmax, ξmax ∈ (0, 1], then we reduce the step size by a factor of β, α = βα, β ∈ (0, 1).
This backtracking line search continues until the condition ξ ≤ ξmax is met. We call this
process bounding effective step size with backtracking and provide its details in Algorithm 2.
This overshooting prevention strategy was originally explored by Mahmood et al. (2012) to
improve the stability of meta-gradient based supervised learning. The idea was then applied
in reinforcement learning as well (see Dabney & Barto 2012, Kearney 2023, Javed et al.
2024). In both settings, only linear function approximation was previously considered.
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Algorithm 2 Bounding Effective Step Size with Backtracking

Initialize: maximum effective step size ξmax (e.g., 0.05)
Require: eligibility trace zw, weight vector w, error function δ, and starting step size α
w′ ← w + αδwzw ▷ Counterfactual weights
while

δw−δw′
δw

> ξmax do ▷ Exact effective step size detection
α← βα ▷ Backtracking line search until the condition is met
w′ ← w + αδwzw ▷ Note that zw = ∇wf for supervised learning

return w′

The drawback of such backtracking is that they require multiple iterations per time step,
each iteration requiring an additional forward pass for each new δ+. This can be expensive
when many forward passes are required until we find a step size that satisfies the criteria. A
less expensive alternative without additional forward passes would be much more desirable.

To avoid expensive computation of backtracking, we develop an approximate mechanism
for effective step size control. For simplicity of analysis, we concatenate all weights’ entries
of the network into a single vector w. Using first-order Taylor approximation and assuming
local linearity, we write the learner’s post-update prediction on the same sample as

f(x;w+) = f(x;w − u(x;w))

= f(x;w)−∇wf(x;w)⊤u(x;w); under local linearity, (2)

where w+ and w are the parameters vectors after and before making the update, respec-
tively, x is the input, and u is the update vector. The local linearity assumption holds
approximately when the updates are small, which is partly what we are aiming to achieve.

Using the effective step size given in Eq. 1, we provide the analysis to get the condition
for effective step size control for TD(λ) and refer the reader to Appendix C for supervised
regression. For semi-gradient TD(λ), the u update vector is αδz, where δ is the TD error
and z is the eligibility trace vector. The effective step size of TD(λ) under nonlinear function
approximation is given by

ξ =
(r + γv(w;x′)− v(w;x))− (r + γv(w+;x′)− v(w+;x))

δ

=
αδγz⊤∇wv(w;x′)− αδz⊤∇wv(w;x)

δ

= αz⊤ (γ∇wv(w;x′)−∇wv(w;x)) .

Since we need to find the gradient of the value function at a different observation x′, it
would still require an additional backward pass. To remove the extra computation, we
further approximate the effective step size as follows:

ξ = αz⊤ (γ∇wv(w;x′)−∇wv(w;x))

≤ α|z|⊤|γ∇wv(w;x′)−∇wv(w;x)| ≤ α|z|⊤1
= α∥z∥1 ≤ κα∥z∥1, where κ > 1

≤ καδ̄∥z∥1, where δ̄ = max(|δ|, 1). (3)
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Here, |z| is a vector containing the modulus of each element of z, and we assume that
all entries of |γ∇wv(w;x′)−∇wv(w;x)| are less than or equal to 1. We motivate the as-
sumption with an argument on Lipschitz’s continuity. If the gradient of the value function
is k-Lipschitz continuous, we can write ∥∇wv(w;x′)−∇wv(w;x)∥1 ≤ k∥x′ − x∥1, when
γ = 1. Thus, for γ ≈ 1 (e.g., 0.99) and k∥x′ − x∥1 < 1 (e.g., nearby states), the in-
equality |γ∇wv(w;x′)−∇wv(w;x)|i ≤ 1, ∀i holds. Our analysis emphasizes that, unlike
in supervised regression, the bootstrapped target in temporal difference learning changes
by changing the prediction output. This perspective aligns with the approach of Dabney &
Barto (2012) and Kearney (2023) but contrasts with the approach of Javed et al. (2024),
who used the same condition that Mahmood et al. (2012) used for supervised regression.
In Algorithm 3, we show how we can build an optimizer that uses this condition on the
effective step size to control the update size. While this algorithm is based on SGD, an
adaptive version similar to the Adam optimizer is given in Appendix B.

Algorithm 3 Overshooting-bounded Gradient Descent (ObGD)

Require: Eligibility trace zw, weight vector w, error δ, step size α, scaling factor κ
δ̄ = max(|δ|, 1)
M ← ακδ̄∥zw∥1 ▷ Note that zw = ∇wf for supervised learning
α← min

(
α
M , α

)
w ← w + αδzw
return w

3.3 Stabilizing activation distribution under non-stationarity

The change in weight distribution across layers can cause trainability issues (Xu et al. 2019).
Thus, many normalization techniques exist to normalize each layer’s pre-activations and give
them similar distributions, which has shown advantages in both stationary (Xu et al. 2019)
and nonstationary settings (Lyle et al. 2023, Gallici et al. 2024) to maintain favorable
learning dynamics. Nauman et al. (2024) have shown that using layer normalization is
crucial for achieving good performance in challenging environments, even with deep RL
methods (e.g., Haarnoja et al. 2018). LayerNorm (Ba et al. 2016) standardizes the pre-
activations by subtracting their mean and dividing by their variance. Other approaches
normalize by the L2 norm of the pre-activation (L2Norm, Nguyen et al. 2017) or the root
mean square of the pre-activation vector (RMSNorm, Zhang & Sennrich 2019).

In our approach, we use LayerNorm (Ba et al. 2016), which we apply to the pre-
activation of each layer (before applying the activation σ) without learning any scaling or
bias parameters. Specifically, the LayerNorm normalization ϕ we use is given by

ϕ(a)
.
=

a− µ√
σ2 + ϵ

, where µ
.
=

1

n

n∑
i=1

ai and σ2 .
=

1

n

n∑
i=1

(ai − µ)2, (4)

where n is the dimensionality of a and ϵ is a small number used for numerical stability.
We call a network that applies LayerNorm at each layer a LayerNorm network.
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3.4 Proper scaling of data

Properly scaling the training data is essential for effective learning (Schraudolph 2002,
LeCun et al. 2002). Training data are typically normalized in supervised learning since
all data points are available beforehand. This assumption breaks in reinforcement learning
where learning is done online based on interactions in environments with unbounded state
spaces. Recently, Lyle et al. (2023) argued that large-scale targets can reduce trainability.
Thus, data-scaling techniques are often used in deep RL (e.g., Schulman et al. 2017).
Scaling the targets, for example, the rewards, (Engstrom et al. 2020) or the TD errors
(Schaul et al. 2021), and scaling the observations (e.g., normalization, Andrychowicz et
al. 2020) are well-established strategies that have shown success and are incorporated into
widely used algorithms such as PPO (Schulman et al. 2017) and A2C (Mnih et al. 2016),
helping improve their performance and stability (Rao et al. 2020, Huang et al. 2022a).
The problem of learning data scaling for reinforcement learning has been studied before,
and mechanisms other than observation or reward normalization have been introduced. For
example, van Hasselt et al. (2016) proposed a method that adaptively normalizes the targets
used in the learning updates, allowing the agent to learn robustly across many orders of
magnitude. However, estimating target scaling as part of the optimization process can be
more involved, and therefore, simple normalization techniques might be desirable.

Algorithm 4 SampleMeanVar (Welford 1962)

Require: Input x, mean µ, estimate p, and counter n.
n← n + 1
µ̄← µ + 1

n(x− µ)
p← p + (x− µ)(x− µ̄)
σ2 ← p

n−1 if n ≥ 2, otherwise σ2 ← 1
return µ̄, σ2, n

In this work, we transform observation and reward to address the scaling issue using the
algorithm by Welford (1962), which computes unbiased estimates of the mean and variance
(also see Knuth 2014, pp. 232). Algorithm 5 shows how rewards are scaled, and Algorithm
6 shows how observations are normalized.

Algorithm 5 ScaleReward

Initialize: u← 0
Require: r, γ, p, T, n
u← γ(1− T )u + r
, p, σ2, n← SampleMeanVar(u, 0, p, n)
Return: r√

σ2+ϵ
, p

Algorithm 6 NormalizeObservation

Require: S, µ, p, n
µ, σ2, p, n← SampleMeanVar(S, µ, p, n)
Return: S−µ√

σ2+ϵ
, µ, p

3.5 Stable streaming deep reinforcement learning methods

Here, we combine the above techniques to provide novel streaming deep reinforcement
learning algorithms, which we call stream-x algorithms. We use the following color scheme
for better readability: purple for layer normalization, blue for observation normalization,
orange for reward scaling, teal for step size scaling, and brown for sparse initialization.
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Algorithms 7, 8, 10, 9, show algorithms—stream AC(λ) for actor-critic-based control, stream
Q(λ) for off-policy action-value-based control based on Watkin’s Q(λ), stream SARSA(λ) for
on-policy action-vallue-based control, and stream TD(λ) for value prediction, respectively.

Algorithm 7 Stream AC(λ)

Given LayerNorm policy network π(a|s;θ) parametrizing a normal distribution with vectorized weights
vector θ and initialized with SparseInit
Given LayerNorm state-value network v̂(s;w) with vectorized weights vector w and initialized with
SparseInit
Initialize discount factor γ (e.g. 0.99) and eligibility traces parameter λ (e.g. 0.9)
Initialize policy step size απ (e.g., 1), value step size αv̂ (e.g., 1), entropy coefficient τ (e.g. 0.01), policy
scaling factor κπ (e.g., 3), and value scaling factor κv̂ (e.g., 2)
Initialize pr, pS to zero and µS , t to one
for each episode do
zw ← 0,zθ ← 0
Initialize S (first state of the episode)
S, µS , pS ,← NormalizeObservation(S, µS , pS , t)
for each time step in the episode do
t← t+ 1
A ∼ π(.|S,θ)
Take action A, observe S′, R, T ▷ T indicates whether S′ is a terminal state
S′, µS , pS ← NormalizeObservation(S′, µS , pS , t)
R, pr,← ScaleReward(R, γ, pr, T, t)
δ ← R+ γv̂(S′,w)− v̂(S,w) ▷ if S′ is terminal, then v̂(S′,w)

.
= 0

zw ← γλzw +∇wv̂(S,w)
zθ ← γλzθ +∇θ (log π(A|S,θ) + τsign(δ)H(.|S,θ)) ▷ H(.|S,θ) is the entropy
θ ← ObGD(zθ,θ, δ, απ, κπ)
w ← ObGD(zw,w, δ, αq̂, κq̂)
S ← S′

Algorithm 8 Stream Q(λ)

Given LayerNorm action-value network q̂(s, a;w) with vectorized weights vector w and initialized with
SparseInit
Initialize discount factor γ (e.g. 0.99) and eligibility traces parameter λ (e.g. 0.9)
Initialize step size α (e.g., 1), and scaling factor κq̂ (e.g., 2)
Initialize pr, pS to zero and µS , t to one
for each episode do
zw ← 0
Initialize S (first state of the episode)
S, µS , pS ,← NormalizeObservation(S, µS , pS , t)
for each time step in the episode do
t← t+ 1
Choose A from S using policy derived from q̂ (e.g., ϵ-greedy)
if A is non-greedy then
zw ← 0

Take action A, observe S′, R, T ▷ T indicates whether S′ is a terminal state
S′, µS , pS ← NormalizeObservation(S′, µS , pS , t)
R, pr,← ScaleReward(R, γ, pr, T, t)
δ ← R+ γmaxa q̂(S

′, a,w)− q̂(S,A,w) ▷ if S′ is terminal, then q̂(S′, .,w)
.
= 0

zw ← γλzw +∇wv̂(S,w)
w ← ObGD(zw,w, δ, αq̂, κq̂)
S ← S′
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Algorithm 9 Stream TD(λ)

Given LayerNorm state-value network v̂(s;w) with vectorized weights vector w and initialized with
SparseInit
Initialize discount factor γ (e.g. 0.99) and eligibility traces parameter λ (e.g. 0.9)
Initialize step size α (e.g., 1) and scaling factor κ (e.g., 2)
Initialize µS , t to zero, and pS , pr to one
for each episode do
zw ← 0
Initialize S (first state of the episode)
S, µS , pS ,← NormalizeObservation(S, µS , pS , t)
for each time step in the episode do
t← t+ 1
Observe S′, R, T ▷ T indicates whether S′ is a terminal state
S′, µS , pS ← NormalizeObservation(S′, µS , pS , t)
R, pr ← ScaleReward(R, γ, pr, T, t)
δ ← R+ γv̂(S′,w)− v̂(S,w) ▷ if S′ is terminal, then v̂(S′,w)

.
= 0

zw ← γλzw +∇wv̂(S,w)
w ← ObGD(zw,w, δ, α, κ)
S ← S′

4 Experiments

In this section, we demonstrate the effectiveness of our stream-x algorithms. We start by
showing stream barrier in different challenging environments where classic methods fail,
but our stream-x algorithms overcome this barrier and are competitive with other batch
methods. We study stream AC(λ) and compare it against classic AC(λ), PPO, SAC, PPO1
(streaming version of PPO), and SAC1 (streaming version of SAC) in MuJoCo and DM
Control environments. Next, we study stream Q(λ) and compare it against their classic
versions in addition to DQN and DQN1 (streaming version of DQN) in MinAtar and the
Atari 2600 arcade environments. We then demonstrate the importance of each component
in our approach with a thorough ablation study. Finally, we study stream TD(λ) and show
its effectiveness in time series prediction with real-life data. We focus in this section on the
key results here and give the full experimental details in Appendix F.

4.1 Overcoming stream barrier

Streaming deep RL methods often experience instability and failure to learn, which we
refer to as stream barrier. Figure 2 shows stream barrier in three different challenging
benchmarking tasks: MuJoCo, DM Control, and Atari. The performance of each algorithm
is averaged over 30 independent runs, each of 20M steps, on Mujoco and DM Control tasks
and over 10 independent runs, each of 200M steps, on Atari tasks. The performance is shown
as zero if some of the runs for an algorithm diverged. Classic streaming methods, namely
Q(λ) (Watkins 1989) and SARSA(λ) (Rummery & Niranjan 1994), AC(λ) (Williams 1992),
perform poorly in these challenging tasks. Similarly, batch RL methods such as PPO, SAC,
and DQN struggle when used in streaming learning, which is achieved with a buffer and
a batch size of 1 and dubbed as PPO1, SAC1, and DQN1, respectively. Our stream-x
methods not only overcome the stream barrier, that is, learn stably and effectively in these
tasks, but also become competitive with batch RL methods and even outperform in some
environments. For example, Figure 2b shows the performance in the Dog environments
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where our stream AC(λ) outperforms both PPO and SAC by large margins, achieving the
best known performance of any model-free algorithm on this environment. Figure 2c shows
the performance in Atari Enduro game where stream Q(λ) outperforms DQN even though
it uses a fraction of the memory and compute required by DQN.

4.2 Sample efficiency of stream-x algorithms

Here, we study the sample efficiency of our stream-x methods by comparing the learning
curves of different algorithms. Figure 3 shows the performance of different deep RL methods
on four continuous control MuJoCo tasks. We compare stream AC against the streaming
variants PPO1 and SAC1 in addition to their original batch forms, PPO and SAC. We omit
Classic AC from this comparison since we found it is extremely unstable such that even with
a tiny step size (e.g., 10−11), it still diverges. Figure 3 shows that stream AC with λ = 0.8
outperforms PPO1 and SAC1 in all environments and is more sample efficient than PPO
in Humanoid-v4, HumanoidStandup-v4, and Ant-v4. Our results present clear evidence
contrary to the common belief that streaming methods ought to be sample inefficient.
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Figure 3: Sample efficiency of stream AC(λ) in MuJoCo environments. The results are
averaged over 30 independent runs. The shaded area represents a 90% confidence interval.

In Figure 4, we show the performance of stream Q(0.8) against its classic counterpart
in addition to DQN1 and DQN on MinAtar tasks. In contrast to the previous experiment,
neither classic streaming Q(0.8) nor DQN1 failed in MinAtar tasks. This matches with the
observation made by Young & Tian (2019) where streaming deep RL methods succeeded
in MinAtar. We hypothesize that the MinAtar tasks are not challenging enough to study
stream barrier, which is observed in other benchmark tasks. Nonetheless, our stream Q(0.8)
achieves performance comparable to DQN and better than DQN1 and classic Q(0.8) in
most environments. Our results suggest that stream Q(0.8) is as sample efficient as DQN
in MinAtar tasks. We repeat this experiment and the next with SARSA in Appendix G.

4.3 Stability of stream-x algorithms in extended runs

Next, we investigate the stability of our stream-x algorithms when running for an extended
period. Such a setup is effective in revealing whether a method can be run for an extended
period without any issues. Dohare et al. (2023, also see 2024) studied this setting and
showed that PPO experiences some amount of instability that may lead the performance
to degrade. In Figure 5, we compare stream AC against SAC, PPO, SAC1, and PPO1
in a number of MuJoCo and DM control tasks where the agents are run for 20M time
steps. PPO indeed suffered performance degradation in all tasks and SAC in one of them.
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Figure 4: Sample efficiency of stream Q(λ) on MinAtar environments. The results are
averaged over 30 independent runs. The shaded area represents a 90% confidence interval.

We observe that stream AC remains stable and improves its performance, outperforming
SAC1, PPO1, and PPO in all tasks. Additionally, stream AC even outperforms SAC in
the Dog domain environments (stand and walk), in which SAC diverges before finishing the
20M time steps. Our results demonstrate the superior stability of our method, even when
compared to batch RL methods. Stream AC does not experience any instability, sustains
extended runs, and continues to improve with more experience, suggesting its potential for
lifelong learning applications where extended runs are integral.
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Figure 5: Stability of stream AC(λ) on MuJoCo and DMC environments. The results are
averaged over 30 independent runs. The shaded area represents a 90% confidence interval.

Now, we are ready to investigate how our stream-x methods perform on Atari’s chal-
lenging problems. The Atari arcade learning environments are considered hard for multiple
reasons, including high dimensional observation space, exploration challenges, and complex
dynamics. Thus, the common belief is batch RL becomes necessary to have a data-efficient
approach since samples can be reused multiple times (Mnih et al. 2015). Here, we test
this assumption by comparing stream Q(0.8) against DQN in addition to the streaming
methods, DQN1 and classic Q(0.8). Figure 6 shows the performance of different agents on
Atari games experiencing 200M frames in total, which is the standard number of time steps
used in multiple works (e.g., Hessel et al. 2018). The DQN data points are taken from
Table 6 in Hessel et al. (2018). We observe that DQN1 fails quickly in all environments,
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and classic Q(0.8) struggles and suffers from instability. Only stream Q(0.8) represents a
strong competitor to DQN. Notably, we found that stream Q(0.8) outperforms DQN in 9
environments and falls behind DQN in 6 environments (see Figure 12 in Appendix G).
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Figure 6: Performance of stream Q(λ) on Atari environments. The results are averaged
over 10 independent runs. The shaded area represents a 90% confidence interval.

4.4 Understanding the importance of each component in stream-x algorithms

Next, we investigate what makes stream-x algorithms perform well. First, we take stream
AC(0.8) and remove each component to determine which contributes the most to perfor-
mance. Specifically, we remove one of the following components one at a time: ObGD,
observation normalization and reward scaling, layer normalization, and sparse initializa-
tion. We also compare these variants with classic AC(0.8). Second, we study the role of
eligibility traces on performance by comparing stream AC(0) and stream AC(0.8) along
with classic AC(0) and classic AC(0.8).
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Figure 7: Ablation on the components of stream AC(λ): ObGD, LayerNorm, SparseInit,
and data normalization. The shaded area represents a 90% confidence interval.

Figure 7 shows an ablation on the components of stream AC(λ). When we removed
sparse initialization and replaced it with LeCun initialization (LeCun et al. 2002), the
agent was still able to learn, but slower, confirming the role of sparse initialization in
sample efficiency. When we removed layer normalization from stream AC, the performance
suffered significantly in all environments, especially Hopper-v4 and Walker-v4. Finally,
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when we removed observation normalization and reward scaling or replace ObGD with
well-tuned Adam, the agent was no longer able to improve its performance. Notably, the
largest effect on performance comes from ObGD, indicating its crucial role in achieving
stable learning.
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Figure 8: Ablation on the role of eligibility traces in stream AC(λ). The results are averaged
over 30 independent runs. The shaded area represents a 90% confidence interval.

Figure 8 shows an ablation of eligibility traces in stream AC(λ). We observe that stream
AC benefits if we use eligibility traces, which is visible from the performance improvement
of stream AC(0.8) over stream AC(0). On the other hand, we observe that although classic
AC with well-tuned Adam is unable to improve its performance in all environments, the
addition of eligibility traces in the Ant-v4 even hurts performance, which indicates the
additional instability caused by eligibility traces without proper step size adjustment.

4.5 Learning how to predict the future

Lastly, we finish with temporal prediction using TD(λ) (Sutton 1988). We use the electric-
ity transformer temperature dataset (Zhou et al. 2021), which has 6 external load features
to predict power consumption. The dataset provides the oil temperature readings, which
correlate with the power consumption. The goal of the learner is to predict future tempera-
tures, which would help anticipate future power consumption. The dataset is referred to as
ETTm2 (see Figure 9), which represent 2 years worth of data measured every 15 minutes,
resulting in a total of 2 year × 365 days × 24 hours × 4 times = 70, 080 data-points. The
environment provides the agent with an observation vector of the 6 feature in addition to
the oil temperature from the previous time step. The goal of the agent is to predict future
oil temperature using a general value function (GVF, Sutton et al. 2011). This is achieved
by extending the return definition to include any scalar signal: Gt

.
=

∑∞
j=0 γ

kct+k+1, where
ct is some scalar signal known as the cumulant. The cumulant can be chosen to be an entry
to the observation vector to perform nexting (see Modayil et al. 2014). For example, a pre-
diction with a horizon of 100 time steps approximately corresponds to a GVF with γ = 0.99,
since the prediction horizon is about 1

1−γ (see Sutton et al. 2011). In our problem, we use
γ = 0.99, corresponding to a prediction horizon of 25 hours into the future. To allow for
such a far prediction horizon, the agent needs some form of encoded information about the
history. Following Janjua et al. (2023), we construct memory traces of observations using
exponential moving averages (also see Tao et al. 2023, Rafiee et al. 2023). Specifically,
given the ith entry in the observation vector Ot,i at time step t, we form the memory trace
as St,i = βSt−1,i+(1−β)Ot,i, where β is a trace decay factor of 0.999. Those memory traces
are used as the agent state in Algorithm 9.
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Figure 9: The Electricity Transformer Temperature (ETT) prediction problem. The goal
is to predict the oil temperature (purple) using the other 6 external load features.

In Figure 10, we show the performance of stream TD(0.8) against classic TD(0.8) at
the beginning and the end of the ETTm2 time series. We plot the value prediction at each
time step in comparison with the true return based on the cumulants. Instead of using the
actual temperature values, we normalize them by their minimum and maximum for better
visuals; however, this step is not needed. The prediction performance at initialization is
poor, but it improves with learning until it closely matches the true return values. Since
we scale the rewards in Algorithm 9 by 1/σ, we multiply the standard deviation σ to each
value function prediction.
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Figure 10: Performance of stream TD(λ) on the ETTm2 prediction task. The results are
averaged over 30 independent runs. The shaded area represents a 90% confidence interval.

5 Related works

Continual Learning. The goal of continual learning research is to develop algorithms
that allow agents to keep learning, potentially forever. The two obstacles in continual
learning are loss of plasticity (Dohare et al. 2024) and catastrophic forgetting (McCloskey
& Cohen 1989, Hetherington & Seidenberg 1989). Loss of plasticity reduces the agent’s
ability to learn gradually over time, while catastrophic forgetting prevents it from retaining
and utilizing past memories, ultimately hindering its performance improvement. Some
works focus on maintaining plasticity primarily in nonstationary supervised learning (e.g.,
Dohare et al. 2024, Kumar et al. 2023, Lewandowski et al. 2023, Elsayed & Mahmood 2024,
Lewandowski et al. 2024, Lee et al. 2024), whereas others focus on reinforcement learning
(e.g., Delfosse et al. 2024, Xu et al. 2024, Ma et al. 2024, Lyle et al. 2024a, Lyle et al.
2024b, Lyle et al. 2023, Elsayed et al. 2024b). On the other hand, a few works (e.g., Elsayed
& Mahmood 2024) address catastrophic forgetting and loss of plasticity at the same time.
In particular, Elsayed & Mahmood (2024) addresses catastrophic forgetting by protecting
useful weights from drastic change when using gradient-based updates. Another approach
to address forgetting is to promote sparse representations. Sparse representations (e.g., Lan
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& Mahmood 2023) address forgetting since their gradient-based updates make significant
changes to the weights of fewer number of connections than dense representations.

Although we use stationary RL tasks in our work, there are commonalities between in-
stability issues in single-task learning and continual learning issues such as loss of plasticity.
For example, LayerNorm, recently found effective against loss of plasticity, is also found
beneficial against instability in our work. We expect some of the other ideas for addressing
loss of plasticity may also be beneficial for single-task streaming RL. Moreover, as our step-
size adjustment technique was found effective against learning instability and in alleviating
step-size tuning, this benefit may even amplify in continual learning, where hyperparameter
tuning is a major stumbling block. Our step-size adjustment technique may also be bene-
ficial for addressing catastrophic forgetting to some extent as it may alleviate interference
by reducing the step size when a large update is attempted.

Step-size adjusting techniques. One goal in optimization is to find a step size that
can make significant but stable progress. Several approaches exist to find a proper step size.
For example, Martens & Grosse (2014) introduced Newton’s update rule with an efficient
approximation to the Fisher block diagonal matrix. Elsayed et al. (2024a) used a Hessian
diagonal approximation to determine if the step size is too large and uses it to stabilize
RL methods. Sutton (1992) showed how to adjust the step size under nonstationarity
using a meta-gradient descent approach called IDBD, which was made more stable with the
overshooting prevention mechanisms by many works (Mahmood 2010, Mahmood et al. 2012,
Kearney 2023, Dabney & Barto 2012, Javed et al. 2024, McLeod et al. 2021). In addition,
Sharifnassab et al. (2024), Schraudolph (1999), and Jacobsen et al. (2019), among many
others, presented extensions to the IDBD idea of step size adaptation in neural networks.
Our work builds on prior work by Mahmood et al. (2012) and Kearney (2023), extending
it to RL and neural networks, and applying a more conservative bound for stability.

Streaming reinforcement Learning. Most algorithms introduced by Sutton & Barto
(2018) are reinforcement learning algorithms for streaming settings. However, their usage
remained limited to tabular and linear approximation cases. Later, several attempts were
made to use neural networks with those streaming methods. There are a few works that
target the problem setting of streaming reinforcement learning. For example, Elfwing et
al. (2018) proposed a new activation function that gives more stability and showed promise
with deep Q-learning but still with limited performance. Similarly, Young & Tian (2019)
demonstrated the effectiveness of the approach by Elfwing et al. (2018) with AC(λ) and
Q(λ) on their MinAtar benchmark, a simplified version of the Atari benchmark (Bellemare
et al. 2013). De Asis et al. (2020) introduced an incremental version of REINFORCE that
works well in small problems (see also Kimura et al. 1995). Javed et al. (2024) introduced
the SwiftTD algorithm for prediction problems by applying SwiftTD to the last linear layer
of a deep network and using TD(λ) to all other layers. Modayil & Abbas (2023) introduced
a streaming method that learns from unstructured observations.

A closely-related concurrent work is that of Vasan et al. (2024), who developed a stream-
ing deep policy gradient method that also overcomes stream barrier. The main differences
are twofold: 1) their method is specific to reparameterization policy gradient whereas we
provide a class of algorithms except for reparameterization policy gradient, and 2) unlike
their work, all results of our algorithms were obtained using a single hyper-parameter con-
figuration. Our work is the first comprehensive step toward reviving streaming deep RL
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by providing a class of algorithms for prediction and both value-based and policy-based
control, showing success on most commonly used complex benchmark tasks.

TinyML. Performing machine learning algorithms on tiny devices (e.g., microcontrollers)
is a challenging task that spans a wide range of applications, such as tiny robots (Neuman
et al. 2022) and edge devices (Lin et al. 2022). The main challenge of TinyML is how to fit
complex machine learning algorithms into such tiny devices. Most TinyML works are only
focused on supporting inference, which does not allow learning. However, on-device training
is crucial for continual learning and allows systems to adapt to new changes. Recently, there
have been advancements that address this issue and support efficient backpropagation that
fits into those tiny devices (Cai et al. 2020, Profentzas et al. 2022, Patil et al. 2022, Lin et
al. 2023). Scaling down machine learning to the level of microcontrollers is powerful since
there are billions of such devices that can benefit from such technology (Zhu et al. 2022).

6 Limitations and future works

Although we have explored a few representative streaming RL algorithms, our approach
is compatible with many other algorithms, such as double Q-learning (van Hasselt 2010),
dueling Q-learning networks (Wang et al. 2016), noisy networks Q-learning (Fortunato et
al. 2018), or even in the continuing setting (e.g., Naik et al. 2024). Our paper focuses on
model-free methods, which are less sample-efficient compared to model-based ones; thus,
a promising direction is to discover how the agent can incrementally learn a model of
the environment to improve sample efficiency following the success of batch model-based
methods (e.g., Hafner et al. 2023, Samsami et al. 2024, Liu et al. 2024). Another promising
direction is to combine our approach with real-time recurrent learning (Williams & Zipser
1989) to handle partial observability, especially with the recent scalable approaches (e.g.,
Irie et al. 2024, Zucchet et al. 2024, Elelimy et al. 2024, Javed et al. 2023). In addition,
we focus mainly on on-policy methods (except for stream Q) and leave comprehensive
experimenting with our approach to a broader range of off-policy methods, such as with
importance sampling (e.g., Sutton et al. 2016, He et al. 2023) for future work. Recent
step-size adaptation techniques, such as those along the lines of Young et al. (2018), are a
potentially useful path to improve our optimizer. Our insights are also relevant to other
problem settings, such as parallelized reinforcement learning (e.g., Gallici et al. 2024), to
improve the stability or include eligibility traces to other methods.

7 Conclusion

In this paper, we addressed—stream barrier—the severe issue of learning instability, of-
ten leading to excessive sample inefficiency, and even failure faced by existing streaming
reinforcement learning algorithms. We developed stream-x algorithms, a class of novel
streaming deep RL algorithms based on a set of common techniques that overcome stream
barrier. The stream-x algorithms work robustly using a single set of hyperparameters on
several benchmark tasks from multiple commonly used suites. Our results with stream AC,
which achieves learning efficiency and performance similar to PPO, challenge the prevailing
notion that streaming learning algorithms are inherently sample inefficient. The stream-x
algorithms are just the beginning of a broader wave of innovations yet to come, serving as
a catalyst to revitalize streaming deep RL.
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Appendix A. The stream SARSA(λ) algorithm

Algorithm 10 Stream SARSA(λ)

Given LayerNorm action-value network q̂(s, a;w) with vectorized weights vector and initialized with
SparseInit
Initialize discount factor γ (e.g. 0.99) and eligibility traces parameter λ (e.g. 0.9)
Initialize step size α (e.g., 1), and scaling factor κq̂ (e.g., 2)
Initialize pr, pS to zero and µS , t to one
for each episode do
zw ← 0
Initialize S (first state of the episode)
S, µS , pS ,← NormalizeObservation(S, µS , pS , t)
Choose A from S using policy derived from q̂ (e.g., ϵ-greedy)
for each time step in the episode do
t← t+ 1
Take action A, observe S′, R, T ▷ T indicates whether S′ is a terminal state
S′, µS , pS ← NormalizeObservation(S′, µS , pS , t)
R, pr,← ScaleReward(R, γ, pr, T, t)
Choose A′ from S′ using policy derived from q̂ (e.g., ϵ-greedy)
δ ← R+ γq̂(S′, A′,w)− q̂(S,A,w) ▷ if S′ is terminal, then q̂(S′, .,w)

.
= 0

zw ← γλzw +∇wv̂(S,w)
w ← ObGD(zw,w, δ, αq̂, κq̂)
S ← S′

Appendix B. Adaptive Overshooting-bounded Gradient Descent

Here, we create an adaptive version of our method. Let us consider an RMSProp-based
optimizer (Tieleman & Hinton 2012). The update vector would be αδz√

v+ϵ
, where v is a

vector containing the second moments of δz and ϵ is a small number for numerical stability.
Repeating the analysis we have in Section 3.2, we can end up with the following:

ξ = α

(
z√
v + ϵ

)⊤
(γ∇wv(w;x′)−∇wv(w;x)) (under local linearity)

≤ α

∣∣∣∣ z√
v + ϵ

∣∣∣∣⊤ |γ∇wv(w;x′)−∇wv(w;x)|

≤ α

∣∣∣∣ z√
v + ϵ

∣∣∣∣⊤ 1

= α

∥∥∥∥ z√
v + ϵ

∥∥∥∥
1

≤ κα

∥∥∥∥ z√
v + ϵ

∥∥∥∥
1

, where κ > 1

≤ καδ̄

∥∥∥∥ z√
v + ϵ

∥∥∥∥
1

, where δ̄ = max(|δ|, 1) (5)

using the same assumption that all entries of |γ∇wv(w;x′)−∇wv(w;x)| ≤ 1 and per-
forming the division element-wise in z√

v+ϵ
. The derivation also works if we replace the

second-moment estimator with a variance estimator (cf. Zhuang et al. 2020).
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Appendix C. Overshooting bounds for supervised regression

The update vector in supervised regression is given by u = −α∇wL for the input-target
pair (x, y). We write the effective step size for supervised regression with the following:

ξ =
(f(x;w)− y)− (f(x;w+)− y)

δ

=
(f(x;w)− y)− (f(x;w)− α∇wf(x;w)⊤∇wL − y)

δ
(under local linearity)

=
δα∇wf(x;w)⊤f(x;w)

δ

= α∇wf(x;w)⊤∇wf(x;w)

≤ ακ∥∇wf(x;w)∥1, where κ > 1

≤ καδ̄∥∇wf(x;w)∥1, where δ̄ = max(|δ|, 1) (6)

Appendix D. Bounding effective step size for linear functions

Here, we provide two simple examples to show how to bound the effective step size in
supervised regression and temporal difference learning with linear function approximation.
First, we consider the problem of supervised regression with squared error loss. Let us
consider function f to be linear where y is the target and wTx is the prediction. The loss
is given by L = 1

2(w⊤x− y)2. The effective step size for a given input-output pair (x, y) is:

ξ =
(w⊤x− y)− (w⊤

+x− y)

δ
=

(w⊤x− y)− ((w − α∇wL)⊤x− y)

δ

=
(w⊤x− y)− ((w − αδx)⊤x− y)

δ
=

δαx⊤x

δ
= αx⊤x,

where w+ is the weight vector after a gradient descent update is performed. Overshooting
happens whenever αx⊤x > 1, which leads to the same condition used in AutoStep algorithm
(Mahmood et al. 2012).

Next, we find the overshooting condition for TD(λ) with linear function approximation.
The TD error is given by δ = r + γwTx′ −wTx, where r is the reward at the current time
step, x is the feature vector at the current time step, and x′ is the feature vector at the next
time step. Remember that for semi-gradient TD(λ), we have w+ = w + δz, where z is the
eligibility trace vector and x is the feature vector. The effective step size for semi-gradient
TD(λ) is given by

ξ =
(r + γw⊤x′ −w⊤x)− (r + γwT

+x
′ −w⊤

+x)

δ

=
−αδz⊤x + γαδz⊤x′

δ
= αz⊤(γx′ − x).

The overshooting happens when αz⊤(γx′ − x) > 1, which is similar to the condition given
by Dabney & Barto (2012) and in the Auto algorithm (McLeod et al. 2021). In these two
examples, the condition we ended up detecting overshooting without any additional forward
passes, which is only the case for linear function approximation.
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Appendix E. Entropy regularization and eligibility traces

The entropy regularized gradient δt∇θ log π(At|St,θt) + τ∇θH(·|St,θt), where τ ∈ [0,∞),
has been shown to promote exploration (Mnih et al. 2016). We use an adaptive entropy
regularization: δt∇θ log π(At|St,θt) + |δt|τ∇θH(·|St,θt), which makes the entropy contri-
bution proportional to the magnitude of the TD error. We can rewrite this gradient as
δt(∇θ log π(At|St,θt)+τsign(δt)∇θH(·|St,θt)), for which eligibility trace vector is defined as
zt = γλzt−1 + (∇θ log π(At|St,θt) + τsign(δt)∇θH(·|St,θt)). This definition of the entropy-
regularized gradient can be easily implemented with our ObGD optimizer since it is in the
form of an error multiplied by a vector (see Section 3.2).

Appendix F. Experimental Details

We implemented the algorithms in Python and used PyTorch (Paszke et al. 2017) for
automatic differentiation to backpropagate gradients in neural networks. In addition, we
use the Gymnasium (Towers et al. 2024) framework for environment implementations.

F.1 Electricity transformer temperature prediction

We used a 128 × 128 fully connected network with LeakyReLU activations (Maas et al.
2013) where LayerNorm (Ba et al. 2016) is added before each activation layer. Stream
TD(λ) uses λ = 0.8 and γ = 0.99. We used κ = 2 and a step size α of 1 for ObGD.
The agent experiences 6700 time steps in total. Lastly, we used sparse initialization with a
sparsity ratio s of 90%.

For classic TD, we use Adam optimizer (Kingma & Ba 2015) with a step size of 3×10−4

using the default β1 = 0.9, β2 = 0.999, and ϵ = 10−4.

F.2 MinAtar

We used a network composed of a convolutional layer (LeCun et al. 1998) with 16 filters of
size 3× 3 and a stride of 1 followed by a fully connected layer with 1024 hidden units and
another one with 128 hidden units. We used LeakyReLU activations (Maas et al. 2013)
where LayerNorm (Ba et al. 2016) is added before each activation layer. Both stream Q(λ)
and stream SARSA(λ) use λ = 0.8 and γ = 0.99. We used κ = 2 and a step size α of 1 for
ObGD. The agent experiences 5M time steps in total and uses an ϵ-greedy policy where ϵ
starts with 1 and decreases to 0.01 with a linear schedule that reaches ϵ = 0.01 at 5% of the
total time steps used. Lastly, we used sparse initialization with a sparsity ratio s of 90%.

We used the implementation of CleanRL (Huang et al. 2022b) for DQN with the same
hyperparameter set and changed the batch size and replay buffer sizes to 1 to obtain DQN1.
Additionally, we make learning start from the first time step with a train frequency of 1
(updating each time step). The DQN at 5M data points used in our MinAtar plots are
taken from Figure 3 in the work by Young & Tian (2019).

For classic Q(λ) and SARSA(λ), we use Adam optimizer (Kingma & Ba 2015) with a
step size of 10−5 using the default β1 = 0.9, β2 = 0.999, and ϵ = 10−4. We kept reducing
Adam’s step size from its default value of 3× 10−4 until we found a step size that did not
cause divergence.
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F.3 Atari

We used a network composed of a convolutional layer (LeCun et al. 1998) with 32 filters of
size 8 × 8 and using a stride of 5 followed by another convolutional layer with 64 filters of
size 4×4 and using a stride of 3 followed by another convolutional layer with 64 filters of size
3×3 and using a stride of 2. The output of the last convolutional layer is flattened and is fed
to a fully connected layer with 256 hidden units and another one with 128 hidden units. We
used LeakyReLU activations (Maas et al. 2013) where LayerNorm (Ba et al. 2016) is added
before each activation layer. Stream Q(λ) and stream SARSA(λ) use λ = 0.8 and γ = 0.99.
We used κ = 2 and a step size α of 1 for ObGD. The agent experiences 50M time steps or
200M frames in total and uses an ϵ-greedy policy where ϵ starts with 1 and decreases to
0.01 with a linear schedule that reaches ϵ = 0.01 at 5% of the total time steps used. Each
action taken by the agent is repeated 4 times. Lastly, we used sparse initialization with a
sparsity ratio s of 90%.

The Atari environments are prepossessed, the same way as other works (e.g., Rainbow,
Hessel et al. 2018). We downsample the frames to 84×84 then we convert each frame from
RGB to grayscale. To address partial observability, we stack 4 frames. No clipping for the
rewards is performed, and no division by 255 is done for the frames. We made the agent
take a random action at the start of the episode for environments that are fixed until firing.
The episode is terminated on loss of life. Finally, we make the agent take a random number
of no-operation (no-op) actions (up to 30) at the beginning of each episode

We used the implementation of CleanRL (Huang et al. 2022b) for DQN with the same
hyperparameter set and changed the batch size and replay buffer sizes to 1 to obtain DQN1.
Additionally, we made learning start from the first time step with a train frequency of 1
(updating each time step). The DQN at 200M data points used in our Atari plots were
taken from Table 6 in the work by Hessel et al. (2018).

For classic Q(λ) and classic SARSA(λ), we use Adam optimizer (Kingma & Ba 2015)
with a step size of 10−5 using β1 = 0.9, β2 = 0.999, and ϵ = 10−4. We kept reducing Adam’s
step size from its default value of 3 × 10−4 until we found a step size that did not cause
divergence.

F.4 MuJoCo, DM Control, and Classical Control

We used a 128 × 128 fully connected network with LeakyReLU activations (Maas et al.
2013) where LayerNorm (Ba et al. 2016) is added before each activation layer. In the last
layer of the policy network, we used two heads: one for the actions mean and the other for
actions standard deviation. We used separate networks for the policy and value functions.
In continuous control, the standard deviation is parameterized by the SoftPlus function:
f(x) = log(1 + ex). For numerical stability, when the input to the function exceeds a
threshold of 20, we used a linear mapping of y = x. The actions are clamped to be in the
range [−1, 1]. In discrete control, we used softmax policy parameterization. Stream AC(λ)
uses λ = 0.8 and γ = 0.99. We used κ = 3 in the policy network and κ = 2 in the value
network for ObGD using a step size α of 1. The agent experiences 20M time steps in total.
Lastly, we used sparse initialization with a sparsity ratio s of 90%. Since MuJoCo and DM
control environments use time limits to have episodes with bounded lengths, this practice
introduces partial observability and forces the agent to make conflicting updates at states
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where truncation happens, potentially creating learning instability (Pardo et al. 2018). We
followed the recommendation by Pardo et al. (2018) to include the time step as a part of the
agent observation, distinguishing between terminations due to timeouts or the environment
itself. The remaining time is normalized to be in the range [−1/2, 1/2], where 1/2 marks the
end of the episode.

We used the implementation of CleanRL (Huang et al. 2022b) for PPO with the same
hyperparameter set. For PPO1, we changed the mini-batch size, replay buffer size, and
number of epochs to 1.

For classic AC(λ), we use Adam optimizer (Kingma & Ba 2015) with a step size of 10−7

using the default β1 = 0.9, β2 = 0.999, and ϵ = 10−4 in the ablation study in Figure 7 and
Figure 8. We kept reducing Adam’s step size from its default value of 3 × 10−4 until we
found a step size that did not cause divergence during 2M time steps for HalfCheetah-v4 and
Ant-v4. However, we could not find a step size that did not cause divergence for Hooper-v4
and Walker-2d even when using a step size of 10−11, so we used the same step size used in
HalfCheetah-v4 and Ant-v4 for simplicity. On the other hand, we could not find any step
size that did not cause divergence in most MuJoCo and DM control environments, so we
decided to drop them from our Figure 3 and Figure 5.
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Appendix G. Additional Results

G.1 Q(λ) and SARSA(λ) in Atari environments
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Figure 11: Performance of stream SARSA(λ) on Atari environments. The results are aver-
aged over 10 independent runs. The shaded area represents a 90% confidence interval.
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Figure 12: Performance of stream Q(λ) on Atari environments. The results are averaged
over 10 independent runs. The shaded area represents a 90% confidence interval.

G.2 SARSA(λ) in MinAtar environments
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Figure 13: Performance of stream SARSA(λ) on MinAtar environments. The results are
averaged over 30 independent runs. The shaded area represents a 90% confidence interval.
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G.3 AC(λ) on MuJoCo and DM Control environments
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Figure 14: Performance of stream AC in DMC and MuJoCo environments. The results are
averaged over 30 independent runs. The shaded area represents a 90% confidence interval.
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